EELS at very high energy losses.
نویسندگان
چکیده
Electron energy-loss spectroscopy (EELS) has been investigated in the range from 2 to >10 keV using an optimized optical coupling of the microscope to the spectrometer to improve the high loss performance in EELS. It is found that excellent quality data can now be acquired up until about 5 keV, suitable for both energy loss near edge structure (ELNES) studies of oxidation and local chemistry, and potentially useful for extended energy loss fine structure (EXELFS) studies of local atomic ordering. Examples studied included oxidation in Zr, Mo and Sn, and the ELNES and EXELFS of the Ti-K edge. It is also shown that good quality electron energy-loss spectroscopy can even be performed for losses above 9.2 keV, the energy loss at which the collection angle becomes 'infinite', and this is demonstrated using the tungsten L3 edge at about 10.2 keV.
منابع مشابه
High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.
Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. Howeve...
متن کاملIs there a Stobbs factor in atomic-resolution STEM-EELS mapping?
Recent work has convincingly argued that the Stobbs factor-disagreement in contrast between simulated and experimental atomic-resolution images-in ADF-STEM imaging can be accounted for by including the incoherent source size in simulation. However, less progress has been made for atomic-resolution STEM-EELS mapping. Here we have performed carefully calibrated EELS mapping experiments of a [101]...
متن کاملAutomated background subtraction technique for electron energy-loss spectroscopy and application to semiconductor heterostructures.
Electron energy-loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often modelled using an inverse power-law function. Core-loss ionization edges are superimposed on top of the do...
متن کاملHigh Speed EELS and EFTEM Analysis across the Visual Cortex
Unstained biological materials are traditionally difficult to analyze in the TEM as they show very little contrast and more importantly, they are quite susceptible to electron beam damage if extra care is not taken when performing the experiment. Biological materials are almost entirely composed of carbon but in some areas they show other elements in small amounts. Electron Energy Loss Spectros...
متن کاملSeparation of bulk and surface-losses in low-loss EELS measurements in STEM.
To identify major features in low electron energy loss spectra, the different excitations (bulk plasmons, interband transitions, surface plasmons, Cherenkov and surface guided modes) must be delineated from each other. In this paper, this process is achieved by noting the linear thickness dependence of bulk processes contrasted with the constant thickness behavior of surface excitations. An alt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microscopy
دوره 67 suppl_1 شماره
صفحات -
تاریخ انتشار 2018